题目内容
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(
)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
![]()
【答案】(1)(4,6);y=2x2﹣8x+6(2)
;(3)点P的坐标为(3,5)或(
).
【解析】
(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
解:(1)∵B(4,m)在直线y=x+2上,
∴m=4+2=6,
∴B(4,6),
故答案为:(4,6);
∵A(
,
),B(4,6)在抛物线y=ax2+bx+6上,
∴
,解得
,
∴抛物线的解析式为y=2x2﹣8x+6;
(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6),
=﹣2n2+9n﹣4,
=﹣2(n﹣
)2+
,
∵PC>0,
∴当n=
时,线段PC最大且为
.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如图1,过点A(
,
)作AN⊥x轴于点N,则ON=
,AN=
.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN=
,
∴OM=ON+MN=
+
=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:
,解得
,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=2x2﹣8x+6 ②
联立①②式,![]()
解得:
或
(与点A重合,舍去),
∴C(3,0),即点C、M点重合.
当x=3时,y=x+2=5,
∴P1(3,5);
![]()
iii)若点C为直角顶点,则∠ACP=90°.
∵y=2x2﹣8x+6=2(x﹣2)2﹣2,
∴抛物线的对称轴为直线x=2.
如图2,作点A(
,
)关于对称轴x=2的对称点C,
则点C在抛物线上,且C(
,
).
当x=
时,y=x+2=
.
∴P2(
,
).
∵点P1(3,5)、P2(
,
)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(
,
).