题目内容
(1)求证:PB与⊙O相切;
(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;
(3)若AC=12,tan∠F=
【答案】分析:(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;
(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
(3)连接BE,构建直角△BEF.在该直角三角形中利用锐角三角函数的定义、勾股定理可设BE=x,BF=2x,进而可得EF=
x;然后由面积法求得BD=
x,所以根据垂径定理求得AB的长度,在Rt△ABC中,根据勾股定理易求BC的长;最后由余弦三角函数的定义求解.
解答:
(1)证明:连接OA,
∵PA与圆O相切,
∴PA⊥OA,即∠OAP=90°,
∵OP⊥AB,
∴D为AB中点,即OP垂直平分AB,
∴PA=PB,
∵在△OAP和△OBP中,
,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
∴BP⊥OB,
则直线PB为圆O的切线;
(2)答:EF2=4DO•PO.
证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,
∴△OAD∽△OPA,
∴
=
,即OA2=OD•OP,
∵EF为圆的直径,即EF=2OA,
∴
EF2=OD•OP,即EF2=4OD•OP;
(3)解:连接BE,则∠FBE=90°.
∵tan∠F=
,
∴
=
,
∴可设BE=x,BF=2x,
则由勾股定理,得
EF=
=
x,
∵
BE•BF=
EF•BD,
∴BD=
x.
又∵AB⊥EF,
∴AB=2BD=
x,
∴Rt△ABC中,BC=
x,
AC2+AB2=BC2,
∴122+(
x)2=(
x)2,
解得:x=4
,
∴BC=4
×
=20,
∴cos∠ACB=
=
=
.
点评:此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
(3)连接BE,构建直角△BEF.在该直角三角形中利用锐角三角函数的定义、勾股定理可设BE=x,BF=2x,进而可得EF=
解答:
∵PA与圆O相切,
∴PA⊥OA,即∠OAP=90°,
∵OP⊥AB,
∴D为AB中点,即OP垂直平分AB,
∴PA=PB,
∵在△OAP和△OBP中,
∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
∴BP⊥OB,
则直线PB为圆O的切线;
(2)答:EF2=4DO•PO.
证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,
∴△OAD∽△OPA,
∴
∵EF为圆的直径,即EF=2OA,
∴
(3)解:连接BE,则∠FBE=90°.
∵tan∠F=
∴
∴可设BE=x,BF=2x,
则由勾股定理,得
EF=
∵
∴BD=
又∵AB⊥EF,
∴AB=2BD=
∴Rt△ABC中,BC=
AC2+AB2=BC2,
∴122+(
解得:x=4
∴BC=4
∴cos∠ACB=
点评:此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关题目