题目内容
如图中序号(1)(2)(3)(4)对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )
A. (1) B. (2) C. (3) D. (4)
如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).
下列条件中,不能判定四边形ABCD为平行四边形的条件是( )
A. AB∥CD,AB=CD B. ∠A=∠C,∠B=∠D
C. AB=AD,BC=CD D. AB=CD,AD=BC
如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是 (填写序号).
下列运算正确的是( )
A. (a2+2b2)﹣2(﹣a2+b2)=3a2+b2 B. ﹣a﹣1=
C. (﹣a)3m÷am=(﹣1)ma2m D. 6x2﹣5x﹣1=(2x﹣1)(3x﹣1)
定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A上取点O10,以点O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径是________.
如图,在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上的一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线.
(2)若BF=6,⊙O的半径为5,求CE的长.
不等式组的解集为( )
A. x>2. B. x ≥ 2. C. x>3. D. x ≥ 3.