题目内容
已知二次函数y=﹣x2+x+.
(1)用配方法将此二次函数化为顶点式;
(2)求出它的顶点坐标和对称轴.
若二次函数y=x2+mx的对称轴是x=2,则关于x的方程x2+mx=5的解为( )
A. x1=1,x2=5 B. x1=1,x2=3 C. x1=1,x2=﹣5 D. x1=﹣1,x2=5
某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABCD、线段CD分别表示该产品每千克生产成本y1(单位:元)销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
(1)求线段AB所表示的y1与x之间的函数表达式.
(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?
如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A. B. C. 4 D. 5
如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积;
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标.
如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为 .
已知△ABC中,∠C=90°,AB=13,AC=5,则sinA=______.
先化简,再求值:[﹣]÷ ,其中x=tan45°﹣6sin30°.
关于x的方程x2﹣mx﹣1=0根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根
C. 没有实数根 D. 不能确定的