题目内容

如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为  度.

考点:

线段垂直平分线的性质;等腰三角形的性质;翻折变换(折叠问题).

分析:

连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.

解答:

解:如图,连接OB、OC,

∵∠BAC=54°,AO为∠BAC的平分线,

∴∠BAO=∠BAC=×54°=27°,

又∵AB=AC,

∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,

∵DO是AB的垂直平分线,

∴OA=OB,

∴∠ABO=∠BAO=27°,

∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,

∵DO是AB的垂直平分线,AO为∠BAC的平分线,

∴点O是△ABC的外心,

∴OB=OC,

∴∠OCB=∠OBC=36°,

∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,

∴OE=CE,

∴∠COE=∠OCB=36°,

在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.

故答案为:108.

点评:

本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网