题目内容
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10,AC=8,求DF的长.
已知矩形ABCD的顶点A、D在圆上, B、C两点在圆内,请仅用没有刻度的直尺作图.
(1)如图1,已知圆心O,请作出直线l⊥AD;
(2)如图2,未知圆心O,请作出直线l⊥AD.
在-3,-1,1,3四个数中,比-2小的数是( )
A.-3 B.-1 C.1 D.3
小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A. 10米 B. 12米 C. 15米 D. 22.5米
下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
A. B. C. D.
如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色; ;则从第()个图中随机取出一个球,是黑球的概率是____________.
在函数中,自变量的取值范围是______________
已知,
(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.
(本小题满分9分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?