题目内容
方程x-2=x(x-2)的解为( )
A. x=0 B. x1=0,x2=2
C. x=2 D. x1=1,x2=2
如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.
(1)若半圆的半径为10.
①当∠AOM=60°时,求DM的长;
②当AM=12时,求DM的长.
(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.
下列计算正确的是( )
A. B. C. D.
如图,在△ABC中,点P为AB上一点,给出下列四个条件:
①∠ACP=∠B; ②∠APC=∠ACB;③AC2=AP·AB;④AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件是 ( )
A. ①②④ B. ①③④ C. ②③④ D. ①②③
方程x2-2x-2=0的解是____________.
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片沿对角线剪开,得到和.并且量得,.
操作发现:
(1)将图1中的以点为旋转中心,按逆时针方向旋转,使,得到如图2所示的,过点作的平行线,与的延长线交于点,则四边形的形状是________.
(2)创新小组将图1中的以点为旋转中心,按逆时针方向旋转,使、、三点在同一条直线上,得到如图3所示的,连接,取的中点,连接并延长至点,使,连接、,得到四边形,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将沿着方向平移,使点与点重合,此时点平移至点,与相交于点,如图4所示,连接,试求的值.
先化简,再求值:,其中,.
已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.
(1)如图1,过点E作EH⊥AB于点H,连结DH.
①求证:四边形DHEC是平行四边形;
②若m=,求证:AE=DF;
(2)如图2,若m=,求的值.
实数,-2,-3的大小关系是( )
A. <-3<-2 B. -3<<-2
C. -2<<-3 D. -3<-2<