题目内容

已知△ABC 的三个内角之比∠A:∠B:∠C=1:2:1,则三边之比AB:BC:CA是


  1. A.
    1:1:数学公式
  2. B.
    1:数学公式:1
  3. C.
    1:1:2
  4. D.
    1:4:1
A
分析:利用已知条件和三角形内角和定理求得∠A=∠C=45°,∠B=90°;然后根据等腰直角三角形的性质来计算三边之比AB:BC:CA.
解答:解:∵在△ABC 中,∠A:∠B:∠C=1:2:1(已知),
∠A+∠B+∠C=180°(三角形内角和定理),
∴∠A=∠C=45°,∠B=90°,
∴AC=AB,AB=AC,
∴AB:BC:CA=1:1:
故选A.
点评:本题考查了等腰直角三角形、三角形内角和定理.解答该题的关键是挖掘出隐含在题干中的已知条件:三角形的内角和的180°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网