题目内容


如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG。

求证:(1)AF=CG;

(2)CF=2DE


证明:(1)∵∠ACB=90°,AC=BC,CG平分∠ACB

∴∠BCG=∠CAB=45°

又∵∠ACF=∠CBG,AC=BC

∴△ACF≌△CBG(ASA)

∴CF=BG,AF=CG.

              (2)延长CG交AB于点H.

∵AC=BC,CG平分∠ACB

∴CH⊥AB,H为AB中点

又∵AD⊥AB

∴CH∥AD

∴G为BD的中点

∴BG=DG

∠D=∠EGC

∵E为AC中点

∴AE=EC

又∵∠AED=∠CEG

∴△AED≌△CEG(AAS)

∴DE=EG

∴BG=DG=2DE

由(1)得CF=BG

∴CF=2DE.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网