题目内容
如果a=(-2013)0 ,b=(-0.5)-1,c=,那么a、b、c三个数的大小为 ( )
A.a>c>b B.c>b>a C.c>a>b D.a>b>c
先化简,再求值:,其中.
若∠A, ∠B互为补角,且∠A﹤∠B,则∠A的余角是( )
A.(∠A+∠B) B. ∠B C. (∠B-∠A) D.∠A
如图,⊿ABC中,∠A = 30°,∠B = 70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度。
如果等式成立,则的值可能有( )
A. 1个 B. 2个 C. 3个 D. 4个
将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的函数解析式为:y=-x+4.若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P.
(1)直接写出点C的坐标是 :
(2)若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分周长为L,试求出L关于x的函数关系式.
如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为 .
通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___________,SAS
易证△AFG≌___________△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°.点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系______________∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF-S△BEF= ( )
A. 2 B.3 C. 4 D.5