题目内容

如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.
(1)求证:△ACB∽△DCE;
(2)求证:EF⊥AB.

证明:(1)∵

又∵∠ACB=∠DCE=90°,
∴△ACB∽△DCE.

(2)∵△ACB∽△DCE,
∴∠ABC=∠DEC.
又∵∠ABC+∠A=90°,
∴∠DEC+∠A=90°.
∴∠EFA=90°.
∴EF⊥AB.
分析:(1)从图中得到AC=3,CD=2,BC=6,CE=4,∠ACB=∠DCE=90°,故有,所以△ACB∽△DCE;
(2)由1知,∠B=∠E,可得∠B+∠A=∠E+A=180°-∠AFE=90°,即∠EFA=90°,故EF⊥AB.
点评:本题利用了对应边的夹角相等,且对应边成比例的两个三角形相似的判定三角形相似的方法,及三角形内角和定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网