题目内容
如图,已知矩形ABCD,AD=2,DC=4,BN=2AM=2MN,P在CD上移动,AP与DM交于点E,PN交CM于点F,设四边形MEPF的面积为S,求S的最大值.

连接PM,设DP=x,则PC=4-x,
∵AM∥OP,
∴
=
,
∴
=
,即
=
,
∵
=
且S△APM=
AM•AD=1,
∴S△MPE=
,
同理可得,S△MPF=
,
∴S=
+
=2-
-
=2-
=2+
≤2-
=
,
当x=2时,上式等号成立,
∴S的最大值为:
.
故答案为:
.

∵AM∥OP,
∴
| PE |
| EA |
| PD |
| AM |
∴
| PE |
| PA |
| PD |
| PD+AM |
| PE |
| PA |
| x |
| x+1 |
∵
| S△MEP |
| S△APM |
| PE |
| PA |
| 1 |
| 2 |
∴S△MPE=
| x |
| x+1 |
同理可得,S△MPF=
| 4-x |
| 5-x |
∴S=
| x |
| x+1 |
| 4-x |
| 5-x |
| 1 |
| x+1 |
| 1 |
| 5-x |
| 6 |
| -x2+4x+5 |
| 6 |
| (x-2)2-9 |
| 2 |
| 3 |
| 4 |
| 3 |
当x=2时,上式等号成立,
∴S的最大值为:
| 4 |
| 3 |
故答案为:
| 4 |
| 3 |
练习册系列答案
相关题目