题目内容
如右图,已知圆的半径是5,弦AB的长是6,则弦AB的弦心距是( )A.3
B.4
C.5
D.8
【答案】分析:先过点O作OD⊥AB于点D,由垂径定理可知AD=
AB,在Rt△AOD中利用勾股定理即可求出OD的长.
解答:
解:过点O作OD⊥AB于点D,则AD=
AB=
×6=3,
∵圆的半径是5,即OA=5,
∴在Rt△AOD中,
OD=
=
=4.
故选B.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
解答:
∵圆的半径是5,即OA=5,
∴在Rt△AOD中,
OD=
故选B.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目