题目内容
已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.∠ADE=30°,⊙O的半径为2,图中阴影部分的面积为________.
分析:连接OB,易证△OAB是等边三角形,求得扇形OAB的面积减去△OAB的面积,即可求得阴影部分的面积.
解答:
∵DE⊥MN,
∴直角△AED中,∠DAE=90°-∠ADE=60°,
∵AD平分∠CAM交⊙O于点D,
∴∠CAM=2∠DAE=120°,
∴∠OAB=60°,
∵OA=OB,
∴△AOB是等边三角形.
∴S△AOB=
S扇形OAB=
则阴影部分的面积为
故答案是:
点评:本题考查了扇形的面积的计算,正确证明△OAB是等边三角形是关键.
练习册系列答案
相关题目