题目内容
下列四个三角形,与左图中的三角形相似的是( )
永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)
(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?
方程2x-3y=5,xy=3,x+=3,3x-y+2z=0,x2+y=6中是二元一次方程的有( )个.
A. 1 B. 2 C. 3 D. 4
如图,P为正三角形ABC外接圆上一点,则∠APB等于( )
A. 150° B. 135° C. 115° D. 120°
如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲、乙、丙、丁四点中的( )
A. 甲 B. 乙
C. 丙 D. 丁
如图1,AB是⊙O的直径,BC是⊙O的切线,OC∥弦AD
(1)求证:CD是⊙O的切线;
(2)如图2,连AC交BD于E.若AE=CE,求tan∠ACB的值.
(题文)如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为π;小亮说此圆锥的弧长为π,则下列结论正确的是( )
A. 只有小明对 B. 只有小亮对 C. 两人都对 D. 两人都不对
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD;
(2)求斜坡新起点A到原起点B的距离(精确到0.1米).
参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09.
如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE:S△COB等于( )
A. 1:2 B. 1:3 C. 1:4 D. 2:3