题目内容
【题目】已知四边形ABCD是矩形,AB=2,BC=4,E为BC边上一动点且不与B、C重合,连接AE;
![]()
(1)如图1,过点E作EN⊥AE交CD于点N
①若BE=1,求CN的长;②将△ECN沿EN翻折,点C恰好落在边AD上,求BE的长;
(2)如图2,连接BD,设BE=m,试用含m的代数式表示S四边形CDFE:S△ADF值.
【答案】(1)①CN=
;②BE=2或BE=
;(2)S四边形CDFE:S△ADF=1+
﹣
.
【解析】
(1)①求出CE=BC-BE=3,证明△ABE∽△ECF,得出
=
,即可得出结果;
②过点E作EF⊥AD于F,则四边形ABEF是矩形,得出AB=EF=2,AF=BE,由折叠的性质得出CE=C′E,CN=C′N,∠EC′N=∠C=90°,证明△EC′F∽△NC′D,得出
=
=
,则
=
=
,由
=
,得出
=
,则
=
=
,得出C′D=BE,设BE=x,则C′D=AF=x,C′F=4-2x,CE=4-x,则
=
,
=
,,求出DN=x(2-x),CN=
,由CN+DN=CD=2,即可得出结果;
(2)易证△ADF∽△EBF,得出
=
=
,则
=(
)2=
,推出S△ADF=
s△BEF,由同高底边比例得出S△ABF=
=
S△BEF,由矩形的性质得出S四边形CDFE=S△ADF+S△ABF-S△BEF=(
+
﹣1)S△BEF,即可得出S四边形CDFE:S△ADF值.
解:(1)①∵BE=1,
∴CE=BC﹣BE=4﹣1=3,
∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠BEA=90°,
∵EF⊥AE,
∴∠AEF=90°,
∴∠BEA+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF,
∴
=
,
即:
=
,
解得:CN=
;
②过点E作EF⊥AD于F,如图1所示:
![]()
则四边形ABEF是矩形,
∴AB=EF=2,AF=BE,
由折叠的性质得:CE=C′E,CN=C′N,∠EC′N=∠C=90°,
∴∠NC′D+∠EC′F=90°,
∵∠C′ND+∠NC′D=90°,
∴∠EC′F=∠C′ND,
∵∠D=∠EFC′,
∴△EC′F∽△NC′D,
∴
=
=
,
∴
=
=
,
∵
=
,
∴
=
,
∴
=
=
,
∴C′D=BE,
设BE=x,则C′D=AF=x,C′F=4﹣2x,CE=4﹣x,
∴
=
,
=
,
∴DN=x(2﹣x),CN=
,
∴CN+DN=x(2﹣x)+
=CD=2,
解得:x=2或x=
,
∴BE=2或BE=
;
(2)∵四边形ABCD为矩形,
∴BC=AD,AD∥BC,
∴△ADF∽△EBF,
∴
=
=
,
∴
=(
)2=
,
∴S△ADF=
s△BEF,
S△ABF=
=
=
S△BEF,
S四边形CDFE=S△ADF+S△ABF﹣S△BEF=
S△BEF+
S△BEF﹣S△BEF=(
+
﹣1)S△BEF,
∴S四边形CDFE:S△ADF=(
+
﹣1)S△BEF:
s△BEF=1+
﹣
.