题目内容

17.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.

分析 (1)利用△=b2-4ac=0时,抛物线与x轴有1个交点得到4a2-4a=0,然后解关于a的方程求出a,即可得到抛物线解析式;
(2)利用点C是线段AB的中点可判断点A与点B的横坐标互为相反数,则可以利用抛物线解析式确定B点坐标,然后利用待定系数法求直线AB的解析式.

解答 解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,
∴△=4a2-4a=0,解得a1=0(舍去),a2=1,
∴抛物线解析式为y=x2+2x+1;
(2)∵y=(x+1)2
∴顶点A的坐标为(-1,0),
∵点C是线段AB的中点,
即点A与点B关于C点对称,
∴B点的横坐标为1,
当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),
设直线AB的解析式为y=kx+b,
把A(-1,0),B(1,4)代入得$\left\{\begin{array}{l}{-k+b=0}\\{k+b=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=2}\\{b=2}\end{array}\right.$,
∴直线AB的解析式为y=2x+2.

点评 本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了利用待定系数法求函数解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网