题目内容
如图,∠C=90º,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.
【小题1】用含有x的代数式表示CE的长
【小题2】求点F与点B重合时x的值
【小题3】当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式![]()
【小题1】由题意知,△DBP∽△ABC,四边形PDEC为矩形,
∴
,CE=PD.
∴
.∴
.
【小题2】由题意知,△CEF∽△CBA,∴
.∴
.
当点F与点B重合时,
,9x=20.解得
.
【小题3】当点F与点P重合时,
,4x+9x=20.解得
.
当
时,如图①,![]()
![]()
............ (8分)
当
≤x<
时,如图②,![]()
![]()
=
.
(或
) (7分)
.......... (10分)
解析
练习册系列答案
相关题目