题目内容
已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.【小题1】⑴求证:PA是⊙O的切线;
【小题2】⑵求⊙O的半径及CD的长.
【小题1】证明:(1)联结OA、OC,设OA交BC于G.
∴
∴
∵OB=OC,
∴OA⊥BC.
∴
∵PA∥BC,
∴
∴OA⊥PA.
∴PA是⊙O的切线.
【小题2】(2)∵AB=AC,OA⊥BC,BC="24 "
∴BG=
∵AB=13,
∴AG=
设⊙O的半径为R,则OG=R-5.
在Rt△OBG中,∵
解得,R=16.9 …
∴OG=11.9.
∵BD是⊙O的直径,
∴O是BD中点,
∴OG是△BCD的中位线.
∴DC=2OG=23.8.解析:
略
练习册系列答案
相关题目