题目内容
写出一个解集为x≥2的一元一次不等式 .
某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为( )
A.150πcm2 B.200πcm2 C.300πcm2 D.400πcm2
先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
【问题情境】一节数学课后,老师布置了一道课后练习题:
如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.
(1)阅读理解,完成解答
本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写这道练习题的证明过程;
(2)特殊位置,证明结论
若CE平分∠ACD,其余条件不变,求证:AE=BF;
(3)知识迁移,探究发现
如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)
如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,垂足为G,延长BG交AC于点F,则CF= .
2015年,县委、县政府做出了“小微企业富民,大中企业强县,唱响千年文化,建设美好平定”的决策,如图是小明制作的一个正方体的表面展开图,原正方体中与“建”字所在的面相对的面上标的字是( )
A.美 B.好 C.平 D.定
如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,……以此类推.
(1)移动4次后到达何处?(直接给出答案)
(2)移动2012次后到达何处?
在平面直角坐标系中,抛物线过点,,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点在抛物线的对称轴上,当的周长最小时,求点 的坐标;
(3)在抛物线的对称轴上是否存在点,使成为以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为( )
A.16 B.20 C.24 D.28