题目内容
如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为
- A.3
- B.3.5
- C.2.5
- D.2.8
C
分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.
解答:∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD-AE=4-x,
在Rt△CDE中,CE2=CD2+ED2,
即x2=22+(4-x)2,
解得x=2.5,
即CE的长为2.5.
故选C.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.
分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.
解答:∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD-AE=4-x,
在Rt△CDE中,CE2=CD2+ED2,
即x2=22+(4-x)2,
解得x=2.5,
即CE的长为2.5.
故选C.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.
练习册系列答案
相关题目