题目内容
(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;
(2)先化简(-)÷,并回答:原代数式的值可以等于-1吗?为什么?
某超市规定,如果购买不超过50元的商品时,按全额收费;购买超过50元的商品时,超过部分按九折收费.某顾客在一次消费中,向售货员交纳了212元,那么在此次消费中该顾客购买了价值 元的商品.
如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有( )
A. 1 B. 2 C. 3 D. 4
如图的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )
A. B. C. D.
有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )
已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为________.
如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )
A. 80° B. 60° C. 50° D. 40°
(每小题5分,共10分)计算:
(1) (2)
如图,□ABCD的两个顶点B,D都在抛物线y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点E,使以A,C,D,E为顶点的四边形是菱形?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)动点P从点A出发向点D运动,同时动点Q从点C出发向点A运动,运动速度都是每秒1个单位长度,当一个点到达终点时另一个点也停止运动,运动时间为t(秒).当t为何值时,△APQ是直角三角形?