题目内容
如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于( )
A. B.1 C. D.2
由方程组,可得到x与y的关系式是_____.
若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=________ .
如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )
A.cm B.cm C.cm D.8cm
关于?ABCD的叙述,正确的是( )
A. 若AB⊥BC,则?ABCD是菱形 B. 若AC⊥BD,则?ABCD是正方形
C. 若AC=BD,则?ABCD是矩形 D. 若AB=AD,则?ABCD是正方形
探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠A,∠C的数量关系.
发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;
小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是 .
应用:
在图2中,若∠A=120°,∠C=140°,则∠P的度数为 ;
在图3中,若∠A=30°,∠C=70°,则∠P的度数为 ;
拓展:
在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.
如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则=___________.
以下问题,不适合用普查的是( )
A. 了解全班同学每周体育锻炼的时间 B. 某中学调查全校753名学生的身高
C. 某学校招聘教师,对应聘人员面试 D. 鞋厂检查生产的鞋底能承受的弯折次数