题目内容
如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
(3分)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )
A.4 B.4或5 C.5或6 D.6
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10.
(1)求直线AB与CF之间的距离;
(2)求CD的长.
如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD只需要满足一个条件,是( )
A.四边形ABCD是梯形
B.四边形ABCD是菱形
C.对角线AC=BD
D.AD=BC
如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.
(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.
(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.
(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
将量角器按如图所示的方式放置在三角形纸片上,使点C在半圆圆心上,点B在半圆上,边AB、AC分别交圆于点E、F,点B、E、F对应的读数分别为160°、70°、50°,则∠A的度数为 .
如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为( )
A、2 B、3 C、4 D、6
(1)解不等式:2+≤x;
(2)解方程组:
“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.--苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2-2x=-2实数根的情况是( )
A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根