题目内容
【题目】如图,PA、PB切⊙O于A、B,点C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是_____.
![]()
【答案】24cm
【解析】
连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.
解:连接OA、OB,如图所示:
![]()
∵PA、PB为圆的两条切线,
∴由切线长定理可得:PA=PB,
同理可知:DA=DC,EC=EB;
∵OA⊥PA,OA=5,PO=13,
∴由勾股定理得:PA=12,
∴PA=PB=12;
∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;
∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,
故此题应该填24cm.
练习册系列答案
相关题目