题目内容
| A、1 | ||
| B、1.5 | ||
C、
| ||
D、
|
分析:作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.
解答:
解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.
∵AD是∠BAC的平分线,
∴M′H=M′N′,
∴BH是点B到直线AC的最短距离(垂线段最短),
∵AB=4,∠BAC=45°,
∴BH=AB•sin45°=2×
=
.
∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=
.
故选:C.
∵AD是∠BAC的平分线,
∴M′H=M′N′,
∴BH是点B到直线AC的最短距离(垂线段最短),
∵AB=4,∠BAC=45°,
∴BH=AB•sin45°=2×
| ||
| 2 |
| 2 |
∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=
| 2 |
故选:C.
点评:本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
练习册系列答案
相关题目
| ||
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|