搜索
题目内容
已知,在Rt△ABC中,∠C=90°,AB:BC=3:2.那么∠B的正切值等于________.
试题答案
相关练习册答案
分析:此题根据已知可设AB=3x,则BC=2x,根据勾股定理可求出AC,从而求出∠B的正切值.
解答:设AB=3x,则BC=2x,
根据勾股定理得:
AC=
=
=
x,
tanB=
=
=
.
故答案为:
.
点评:此题考查的知识点是锐角三角函数的定义,关键是根据勾股定理求出另一直角边.
练习册系列答案
快乐寒假每日30分钟系列答案
名校名师寒假培优作业本系列答案
寒假作业合肥工业大学出版社系列答案
金东方文化创新中考系列答案
中考必备河南中考考点集训卷系列答案
考前提分天天练系列答案
快乐过寒假江苏人民出版社系列答案
寒假作业非常5加2白山出版社系列答案
快乐寒假甘肃少年儿童出版社系列答案
寒假篇假期园地广西师范大学出版社系列答案
相关题目
如图,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是边AB的中点,E、G分别是边AC、BC上的一点,∠EMG=45°,AC与MG的延长线相交于点F.
(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;
(2)连接结EG,当AE=3时,求EG的长.
已知:在Rt△ABC中,∠C=90°,∠A=30°,b=
2
3
,解这个直角三角形.
如图,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D为AC上一点(不与A、C不
重合),过D作DQ⊥AC(DQ与AB在AC的同侧);点P从D点出发,在射线DQ上运动,连接PA、PC.
(1)当PA=PC时,求出AD的长;
(2)当△PAC构成等腰直角三角形时,求出AD、DP的长;
(3)当△PAC构成等边三角形时,求出AD、DP的长;
(4)在运动变化过程中,△CAP与△ABC能否相似?若△CAP与△ABC相似,求出此时AD与DP的长.
已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:∠AME=∠CMB.
已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系:
相切
相切
;
(2)证明第(1)题的猜想.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案