题目内容


如图,某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;

(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由

                             (第23题图)


             

23.证明:(1)∵用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),            

∴AB=AF,∠BAM=∠FAN,

在△ABM和△AFN中,

∴△ABM≌△AFN(ASA),

∴AM=AN;

(2)解:当旋转角α=30°时,四边形ABPF是菱形.

理由:∵∠α=30°,∴∠FAN=30°.∴∠FAB=120°.

∵∠B=60°,∴AF∥BP.

∴∠F=∠FPC=60°.∴∠FPC=∠B=60°.∴AB∥FP.

∴四边形ABPF是平行四边形.                               

∵AB=AF.∴平行四边形ABPF是菱形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网