题目内容
如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为( )
A. B. C. D.
一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过( )
A.第二、四象限 B.第一、二、三象限
C.第一、三象限 D.第二、三、四象限
如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为( )
A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)
如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线.
(2)若AB=,E是半圆上一动点,连接AE,AD,DE.
填空:
①当的长度是____________时,四边形ABDE是菱形;
②当的长度是____________时,△ADE是直角三角形.
一个不透明的袋子中装有15个黑球,若干个白球,这些球除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是,则袋子中的白球有___________个.
下列各数中最小的数是( )
A.﹣π B.﹣3 C.﹣ D.0
已知关于x的一元二次方程x2﹣4x+m=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.
如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线的函数解析式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=2秒时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
如图,AB∥CD,AD平分∠BAC,若∠ADC=70°,则∠ACD的度数为( )
A.35° B.40° C.45° D.50°