题目内容
【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.![]()
(1)求函数y=kx+b和y=
的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【答案】
(1)解:把点A(4,3)代入函数y=
得:a=3×4=12,
∴y=
.
OA=
=5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:
![]()
解得: ![]()
∴y=2x﹣5.
(2)解:∵点M在一次函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5),
∵MB=MC,
∴ ![]()
解得:x=2.5,
∴点M的坐标为(2.5,0).
【解析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .
练习册系列答案
相关题目