题目内容
已知中,,,.
(1)求证:是直角三角形;
(2)当时,求,满足的关系式.
在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高__米.
如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )
A. B. C. D.
计算:(-1)-1+()0= _________.
下列四个多项式中,能因式分解的是( )
A. a2+1 B. a2-6a+9 C. x2+5y D. x2-5y
已知+|a-6|+(b-8)2=0,则以a、b、c为三边的三角形是__________.
实验与探究:
()由图观察易知关于直线的对称点的坐标为,请在图中分别标明、关于直线的对称点、的位置,并写出他们的坐标:__________、__________.
归纳与发现:
()结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为__________(不必证明).
运用与拓广:
()已知两点、,试在直线上确定一点,使点到、两点的距离之和最小,并求出点坐标.
如图,已知是平行四边形的对角线交点,,,,那么的周长等于( ).
定义:对非负实数“四舍五入”到个位的值记为,
即:当为非负整数时,如果,则.
如:,,,
试解决下列问题:
①__________;②__________;
③
__________.