题目内容
已知非零向量,,,下列条件中,不能判定∥的是 ( )
A.∥∥ B. C. =-2 D. =2,=
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),
B(4,0)与y轴交于点C.
(Ⅰ)求抛物线的解析式及其顶点D的坐标;
(Ⅱ)求△BCD的面积;
(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).
如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有( )
A.①②③ B.①②④ C.①③④ D.②③④
在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为 米.(结果保留根号)
已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是 .
已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF,
(1)如图1,请直接给出线段MD、MF的数量及位置关系是 ;
(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;
(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.
若直线y=2x+t﹣3与函数y=的图象有且只有两个公共点时,则t的取值范围是 .
如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.
(1)若围成的面积为180,试求出自行车车棚的长和宽;
(2)能围成的面积为200自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.
如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为 .