题目内容

如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为


  1. A.
    4cm
  2. B.
    6cm
  3. C.
    8cm
  4. D.
    10cm
B
分析:先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.
解答:∵AD平分∠CAB交BC于点D
∴∠CAD=∠EAD
∵DE⊥AB
∴∠AED=∠C=90
∵AD=AD
∴△ACD≌△AED.(AAS)
∴AC=AE,CD=DE
∵∠C=90°,AC=BC
∴∠B=45°
∴DE=CE
∵AC=BC,AB=6cm,
∴2BC2=AB2,即BC===3
∴BD=AB-AD=AB-AC=6-3
∴BC+BD=3+6-3=6cm,
∵△DEB的周长=DE+DB+BE=BC+BD=6(cm).
另法:证明三角形全等后,
∴AC=AE,CD=DE.
∵AC=BC,
∴BC=AE.
∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.
故选B.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网