题目内容
已知x+
=4,不求x的值,求下列各式的值:
(1)x2+
(2)(x-
)2.
| 1 |
| x |
(1)x2+
| 1 |
| x2 |
(2)(x-
| 1 |
| x |
分析:(1)转化为完全平方的形式解答;
(2)将(x-
)2通过配方转化为(x+
)2-4的形式再代入求值.
(2)将(x-
| 1 |
| x |
| 1 |
| x |
解答:解:(1)x2+
=x2+2x•
+
-2x•
=(x+
)2-2
=42-2
=14;
(2)(x-
)2
=x2-2x•
+
=x2+2x•
+
-4x•
=(x+
)2-4
=16-4
=12.
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
=(x+
| 1 |
| x |
=42-2
=14;
(2)(x-
| 1 |
| x |
=x2-2x•
| 1 |
| x |
| 1 |
| x2 |
=x2+2x•
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
=(x+
| 1 |
| x |
=16-4
=12.
点评:本题考查了分式的混合运算和完全平方公式,适当转化式子是解题的关键.
练习册系列答案
相关题目
已知
+
=a,则x+
的值为( )
| x |
| 1 | ||
|
| 1 |
| x |
| A、a2-2 |
| B、a2 |
| C、a2-4 |
| D、不确定 |
(易错题)已知x+
=
,则x-
的值是( )
| 1 |
| x |
| 6 |
| 1 |
| x |
A、
| ||
B、-
| ||
C、±
| ||
| D、不能确定 |