题目内容

如图,已知锐角△ABC的面积为1,正方形DEFG是△ABC的一个内接三角形,DG∥BC,求正方形DEFG面积的最大值.

解:∵过点A作AN⊥BC交DG于点M,交BC于点N,设AN=h,DE=x=MN=DG,
BC•h=1,
∵DG∥BC,
∴△ADG∽△ABC,故=,即=
∴x=
设正方形的面积为S,则S=x2=(2=(2=[]2≤()=
分析:过点A作AN⊥BC交DG于点M,交BC于点N,设AN=h,DE=x=MN=DG,根据DG∥BC,再由△ADG∽△ABC即可求出x的表达式,再代入求出三角形的面积即可.
点评:本题考查的是相似三角形的判定与性质,根据题意构造出直角三角形是解答磁体的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网