题目内容

精英家教网已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
(1)求证:AD=AE.
(2)若BE∥AC,试判断△ABC的形状,并说明理由.
分析:(1)由边角关系求证△ADB≌△AEB即可;
(2)由题中条件可得∠BAC=60°,进而可得△ABC为等边三角形.
解答:精英家教网证明:(1)∵AB=AC,点D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°,
∵AE⊥AB,
∴∠E=90°=∠ADB,
∵AB平分∠DAE,
∴∠1=∠2,
在△ADB和△AEB中,
 ∠ADB=∠E
 ∠1=∠2
 AB=AB

∴△ADB≌△AEB(AAS),
∴AD=AE;

(2)△ABC是等边三角形.理由:
∵BE∥AC,
∴∠EAC=90°,
∵AB=AC,点D是BC的中点,
∴∠1=∠2=∠3=30°,
∴∠BAC=∠1+∠3=60°,
∴△ABC是等边三角形.
点评:本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网