题目内容
已知a,b,c,是△ABC的三边,且满足a2b﹣a2c=b3﹣b2c,则△ABC的形状为( )
A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 任意三角形
如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为( )
A. 2 B. 3 C. 4 D. 5
如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:
①b2=4ac;②abc>0;③a>c; ④4a﹣2b+c>0,其中正确有_____(填序号).
一元二次方程4x2﹣1=0的解是( )
A. x1=1,x2=﹣1 B. x1=2,x2=﹣2 C. D.
如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为( )
A. 1 B. ﹣1 C. D. 2﹣
已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.
(1)如图1,∠BME,∠E,∠END的数量关系为 (直接写出答案);
(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数(用用含m的式子表示)
(3)如图3,点G为CD上一点,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)
将一副直角三角板ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为 .
已知△ABC的三边长a,b,c满足a2﹣2ab+b2=ac﹣bc,试判断△ABC的形状,并说明理由.
如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是( )
A. 18﹣9π B. 18﹣3π C. 9﹣ D. 18﹣3π