题目内容


如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.

(1)求AC、AD的长;

(2)试判断直线PC与⊙O的位置关系,并说明理由.


解:(1)①如图,连接BD,

∵AB是直径,

∴∠ACB=∠ADB=90°,

在RT△ABC中,

AC===8,

②∵CD平分∠ACB,

∴AD=BD,

∴Rt△ABD是直角等腰三角形,

∴AD=AB=×10=5cm;

 

(2)直线PC与⊙O相切,

理由:连接OC,

∵OC=OA,

∴∠CAO=∠OCA,

∵PC=PE,

∴∠PCE=∠PEC,

∵∠PEC=∠CAE+∠ACE,

∵CD平分∠ACB,

∴∠ACE=∠ECB,

∴∠PCB=∠ACO,

∵∠ACB=90°,

∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,

OC⊥PC,

∴直线PC与⊙O相切.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网