题目内容
若二次函数y=ax2+bx+a2-2(a,b为常数)的图象如下,则a的值为( )
A.-2 B.- C.1 D.
已知一次函数y=kx+b的图象经过两点A(1,1),B(2,-1),求这个函数的解析式.
下列函数(1)y=3πx;(2)y=8x-6;(3)y=;(4)y=-8x;(5)y=5x2-4x+1中,是一次函数的有( )
A.4个 B.3个 C.2个 D.1个
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是 .
数据“1,2,1,3,3”,则这组数据的方差是 .
等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.15cm2 D.15πcm2
轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若船在静水中速度为26km/h,水流速度为2km/h,则A港和B港相距 km.