题目内容

四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:△ADE≌△ABF;

(2)填空:△ABF可以由△ADE绕旋转中心   点,按顺时针方向旋转   度得到;

(3)若BC=8,DE=6,求△AEF的面积.

24

(1)证明:∵四边形ABCD是正方形,

∴AD=AB,∠D=∠ABC=90°,

而F是DCB的延长线上的点

∴∠ABF=90°,

在△ADE和△ABF中

∴△ADE≌△ABF(SAS);

(2)解:∵△ADE≌△ABF,

∴∠BAF=∠DAE,

而∠DAE+∠EBF=90°,

∴∠BAF+∠EBF=90°,即∠FAE=90°,

∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到;

故答案为A、90;

(3)解:∵BC=8,

∴AD=8,

在Rt△ADE中,DE=6,AD=8,

∴AE==10,

∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,

∴AE=AF,∠EAF=90°,

∴△AEF的面积=AE2=×100=50(平方单位).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网