题目内容

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.

(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.

(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长. 

 

 

【答案】

解:(1)过点G作GH⊥AD,

则四边形ABGH为矩形,

∴GH=AB=8,AH=BG=10,

由图形的折叠可知△BFG≌△EFG,

∴EG=BG=10,∠FEG=∠B=90°;∴EH=6,AE=4,∠AEF+∠HEG=90°,

∵∠AEF+∠AFE=90°,

∴∠HEG=∠AFE,

又∵∠EHG=∠A=90°,

∴△EAF∽△EHG,

,∴EF=5,

∴S△EFG=EF·EG=×5×10=25.

(2)由图形的折叠可知四边形ABGF≌四边形HEGF,

∴BG=EG,AB=EH,∠BGF=∠EGF,

∵EF∥BG,∴∠BGF=∠EFG,∴∠EGF =∠EFG,∴EF=EG,

∴BG=EF,∴四边形BGEF为平行四边形,

又∵EF=EG,∴平行四边形BGEF为菱形;

连结BE,BE、FG互相垂直平分,

在Rt△EFH中,EF=BG=10,EH=AB=8,

由勾股定理可得FH=AF=6,∴AE=16,

∴BE==8,∴BO=4

∴FG=2OG=2=4

【解析】根据轴对称的性质,折叠前后图形的形状和大小不变和矩形的性质及直角三角形的性质,同角的余角相等,相似三角形的判定和性质,平行四边形和菱形的判定和性质求解.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网