题目内容
若ax=3,ay=5,则a3x+2y= .
菱形具有而矩形不一定具有的性质是 ( )
A.内角和等于3600 B.对角相等 C.对边平行且相等 D.对角线互相垂直
事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 .
如图,在△ABC中,已知∠ABC=30°,点D在BC上,点E在AC上,∠BAD=∠EBC,AD交BE于F.
(1)求∠BFD的度数;
(2)若EG∥AD交BC于G,EH⊥BE交BC于H,求∠HEG的度数.
如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的度数为 度.
∠1与∠2是内错角,∠1=40°,则( )
A.∠2=40° B.∠2=140°
C.∠2=40°或∠2=140° D.∠2的大小不确定
宜兴紧靠太湖,所产百合有“太湖人参”之美誉,今年百合上市后,甲、乙两超市分别用12000元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合售价的平均数定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问:
(1)百合进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
用五个小正方体搭成如图的几何体,请画出它的三视图。