题目内容
如图,在△ABC中,AB=AC,以AC为直径作交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
(1)求证: EF与相切;
(2)若AE=6,,求EB的长.
某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
如图,已知拋物线(k为常数,且k>0)与x轴的交点为A、B,与y轴的交点为C,经过点B的直线与抛物线的另一个交点为D.
(1)若点D的横坐标为x= -4,求这个一次函数与抛物线的解析式;
(2)若直线m平行于该抛物线的对称轴,并且可以在线段AB间左右移动,它与直线BD和抛物线分别交于点E、F,求当m移动到什么位置时,EF的值最大,最大值是多少?
(3)问原抛物线在第一象限是否存在点P,使得△APB∽△ABC?若存在,请求出这时k的值;若不存在,请说明理由.
把代数式3x3-12x2+12x分解因式,结果正确的是 ( )
A. 3x(x2-4x+4) B. 3x(x-4)2
C. 3x(x+2)(x-2) D. 3x(x-2)2
﹣2017的倒数是( )
A. 2017 B. ﹣2017 C. D. ﹣
小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一腰长为_________.
图1 图2 图3 图n+1
如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为( )
A. 65° B. 60° C. 55° D. 45°
解不等式组:,并将解集在数轴上表示.
一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.