题目内容
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:![]()
(1)m= , n=;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
【答案】
(1)70;0.2
(2)
解:频数分布直方图如图所示,
![]()
(3)80≤x<90
(4)
解:该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人)
【解析】解:⑴本次调查的总人数为10÷0.05=200,
则m=200×0.35=70,n=40÷200=0.2,
所以答案是:70,0.2;
⑶200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,
∴这200名学生成绩的中位数会落在80≤x<90分数段,
所以答案是:80≤x<90;
【考点精析】通过灵活运用频数分布直方图和中位数、众数,掌握特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图);中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数即可以解答此题.
【题目】八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.