题目内容

如图所示,△ABD,△ACE都是等边三角形,求证:CD=BE.

【答案】分析:要证线段相等,可以把这两条线段放到△ADC和△ABE中,考虑证明全等的条件.根据SAS判定全等后答案可得.
解答:证明:∵△ABD,△ACE都是等边三角形,
∴AC=AE,AD=AB.
∵∠EAC=∠DAB=60°,
∠EAC+∠BAC=∠DAB+∠BAC,
即∠EAB=∠CAD.
在△EAB和△CAD中,
AE=AC,∠EAB=∠CAD,AB=AD,
∴△EAB≌△CAD.
∴BE=CD.
点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得∠EAB=∠CAD是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网