题目内容

大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是(  )

 

A

43

B

44

C

45

D

46

考点:

规律型:数字的变化类。

专题:

规律型。

分析:

观察规律,分裂成的数都是奇数,且第一个数是底数乘以与底数相邻的前一个数的积再加上1,奇数的个数等于底数,然后找出2013所在的奇数的范围,即可得解.

解答:

解:∵23=3+5,33=7+9+11,43=13+15+17+19,

∴m3分裂后的第一个数是m(m-1)+1,共有m个奇数,

∵45×(45-1)+1=1981,46×(46-1)+1=2071,

∴第2013个奇数是底数为45的数的立方分裂后的一个奇数,

∴m=45.

故选C

点评:

本题是对数字变化规律的考查,找出分裂后的第一个奇数与底数的变化规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网