题目内容
如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC= .
下列运算正确的是()
A.a2•a3=a5 B.(ab)2=ab2 C.(a3)2=a9 D.a6÷a3=a2
点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2 0(填“>”或“<”).
如图,在平面直角坐标系xOy中,函数y=ax2+bx+1(a≠0)的图象与x的正半轴交于点A,与x的负半轴交于点B,与y轴交于点C.△PAC中,P(1,﹣1),∠P=90°,PA=PC.
(1)求点A的坐标.
(2)将△PAC沿AC翻折,若点P的对应点Q恰好落在函数y=ax2+bx+1(a≠0)的图象上,求a与b的值.
(3)将△ACO绕点A逆时针旋转90°得到△ADE,在x轴上取一点M,将∠PMD沿PM翻折,若点D的对应点F恰好落在x轴上,求点M的坐标.
小明在学习反比例函数的图象时,他的老师要求同学们根据“探索一次函数y1=x+1的图象”的基本步骤,在纸上逐步探索函数y2=的图象,并且在黑板上写出4个点的坐标:A(,),B(1,2),C(1,),D(﹣2,﹣1).
(1)在A、B、C、D四个点中,任取一个点,这个点既在直线y1=x+1又在双曲线y2=上的概率是多少?
(2)小明从A、B、C、D四个点中任取两个点进行描点,求两点都落在双曲线y2=上的概率.
∠A的余角为60°,则∠A的补角为 °,tanA= .
)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )
A.主视图的面积为5
B.左视图的面积为3
C.俯视图的面积为3
D.三种视图的面积都是4
已知反比例函数的图象通过点(,),则当时, .
(9分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造平行四边形PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.
(1)直接写出当点C运动到线段OB的中点时,求t的值及点E的坐标.
(2)当点C在线段OB上运动时,四边形ADEC的面积为S.
①求证:四边形ADEC为平行四边形.
②写出s与t的函数关系式,并求出t的取值范围.
(3)是否存在某一时刻,使OC是PC的一半?若存在,求出t的值,若不存在,请说明理由.