题目内容

如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有(  )

A、3个   B、2个   C、1个   D、0个

 

【答案】

D.

【解析】

试题分析:根据已知对各个条件进行分析,从而得到答案.

(1)不能,∵AD⊥BC,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC,∴无法证明△ABC是直角三角形;

(2)能,∵∠B=∠DAC,则∠BAD=∠C,∴∠B+∠BAD=∠C+∠DAC=180°÷2=90°;

(3)能

∵CD:AD=AC:AB,∠ADB=∠ADC=90°,

∴Rt△ABD∽Rt△CAD(直角三角形相似的判定定理),

∴∠ABD=∠CAD;∠BAD=∠ACD

∵∠ABD+∠BAD=90°

∴∠CAD+∠BAD=90°

∵∠BAC=∠CAD+∠BAD

∴∠BAC=90°;

(4)能,

∵能说明△CBA∽△ABD,

∴△ABC一定是直角三角形.

共有3个.

故选D.

考点: 相似三角形的判定与性质

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网