题目内容
如图,已知点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD的度数为_____.
如图,BF为⊙O的直径,直线AC交⊙O于A,B两点,点D在⊙O上,BD平分∠OBC,DE⊥AC于点E.
(1)求证:直线DE是⊙O的切线;
(2)若 BF=10,sin∠BDE=,求DE的长.
要使x2+6x+k是完全平方式,那么k的值是( )
A. 9 B. 12 C. ±9 D. 36
如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A. (-,0) B. (-6,0) C. (-3,0) D. (- ,0)
如图所示是一个正方体的表面展开图,请回答下列问题:
(1)与面B,C相对的面分别是 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相对两个面所表示的代数式的和都相等,求E,F分别代表的代数式.
某校在3月份举行读书节活动,鼓励学生进行有益的课外阅读,张老师为了了解该校学生课外阅读的情况,设计了“你最喜欢的课外读物类型”的调查问卷,包括“名著”“科幻”“历史”“童话”四类,在学校随机抽取了部分学生进行调查,被抽取的学生只能在四种类型中选择其中一类,最后将调查结果绘制成如下两幅尚不完整的统计图.
请你根据以上信息解答下列问题:
(1)本次调查中,张老师一共调查了 名学生;
(2)求本次调查中选择“历史”类的女生人数和“童话”类的男生人数,并将条形统计图补充完整;
(3)扇形图中“童话”类对应的圆心角度数为 .
(4)如果该校共有学生360名,请估算该校最喜欢“名著”类和“历史”类的学生总人数.
如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为( )
A. B.
C. D.
如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.
(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;
(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.
如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为( )
A. 2 B. 3 C. 4 D. 5