题目内容


已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2012的值为(     )

A.﹣1005     B.﹣1006     C.﹣1007     D.﹣2012


B【考点】规律型:数字的变化类.

【专题】压轴题;规律型.

【分析】根据条件求出前几个数的值,再分n是奇数时,结果等于﹣,n是偶数时,结果等于﹣,然后把n的值代入进行计算即可得解.

【解答】解:a1=0,

a2=﹣|a1+1|=﹣|0+1|=﹣1,

a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,

a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,

a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,

…,

所以,n是奇数时,an=﹣,n是偶数时,an=﹣

a2012=﹣=﹣1006.

故选:B.

【点评】本题是对数字变化规律的考查,根据所求出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网